Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain ; 147(3): 996-1010, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37724593

RESUMO

Grey matter heterotopia (GMH) are neurodevelopmental disorders associated with abnormal cortical function and epilepsy. Subcortical band heterotopia (SBH) and periventricular nodular heterotopia (PVNH) are two well-recognized GMH subtypes in which neurons are misplaced, either forming nodules lining the ventricles in PVNH, or forming bands in the white matter in SBH. Although both PVNH and SBH are commonly associated with epilepsy, it is unclear whether these two GMH subtypes differ in terms of pathological consequences or, on the contrary, share common altered mechanisms. Here, we studied two robust preclinical models of SBH and PVNH, and performed a systematic comparative assessment of the physiological and morphological diversity of heterotopia neurons, as well as the dynamics of epileptiform activity and input connectivity. We uncovered a complex set of altered properties, including both common and distinct physiological and morphological features across heterotopia subtypes, and associated with specific dynamics of epileptiform activity. Taken together, these results suggest that pro-epileptic circuits in GMH are, at least in part, composed of neurons with distinct, subtype-specific, physiological and morphological properties depending on the heterotopia subtype. Our work supports the notion that GMH represent a complex set of disorders, associating both shared and diverging pathological consequences, and contributing to forming epileptogenic networks with specific properties. A deeper understanding of these properties may help to refine current GMH classification schemes by identifying morpho-electric signatures of GMH subtypes, to potentially inform new treatment strategies.


Assuntos
Vermis Cerebelar , Epilepsia , Transtornos do Neurodesenvolvimento , Humanos , Substância Cinzenta , Neurônios
2.
Neurobiol Dis ; 185: 106260, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573957

RESUMO

Temporal Lobe Epilepsy (TLE) is the most common form of epilepsy in adults. In TLE, recurrent mossy fiber (rMF) sprouting from dentate gyrus granule cells (DGCs) forms an aberrant epileptogenic network between dentate granule cells (DGCs) that operates via ectopically expressed kainate receptors (KARs). It was previously shown that KARs expressed at the rMF-DGC synapses play a prominent role in epileptiform network events in TLE. However, it is not well understood how KARs influence neuronal network dynamics and contribute to the generation of epileptiform network activity in the dentate gyrus. To address this question, we monitored the activity of DGCs using single-cell resolution calcium imaging performed in a reliable in vitro model of TLE. Under our experimental conditions, the most prominent DGC activity patterns were interictal-like epileptiform network events, which were correlated with high levels of neuronal synchronization. The pharmacological blockade of KARs reduced the frequency as well as the number of neurons involved in these events, without altering their spatiotemporal dynamics. Analysis of the microstructure of synchrony showed that blockade of KARs diminished the fraction of neurons forming the main functional cluster. Therefore, we propose that KARs act as modulators in the epileptic network by facilitating the recruitment of neurons into coactive cell assemblies, thereby contributing to the occurrence of epileptiform network events.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Receptores de Ácido Caínico , Neurônios/metabolismo , Giro Denteado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA